

The Protoelectric Potential Map

Ionic Systems:

- Ionic Liquids and Electrolytes
- Cationic Main Group Compounds/Clusters
- Cationic Transition Metal Complexes
- Cationic Brønsted Acids and Oxidants
- Carbocations

$\begin{array}{c} \mathbf{Pe}_{abs} & \mathbf{E}_{as} / \mathbf{V} \\ 140 & - & \mathbf{E}_{as} / \mathbf{V} \\ 140 & - & \mathbf{E}_{as} / \mathbf{V} \\ 120 & - & - & \mathbf{E}_{as} / \mathbf{V} \\ 120 & - & - & \mathbf{E}_{as} / \mathbf{V} \\ 120 & - & - & \mathbf{E}_{as} / \mathbf{V} \\ 120 & - & - & \mathbf{E}_{as} / \mathbf{V} \\ 120 & - & - & \mathbf{E}_{as} / \mathbf{V} \\ 120 & - & - & \mathbf{E}_{as} / \mathbf{V} \\ 140 & - & - & - & \mathbf{E}_{as} / \mathbf{V}$

Weakly Coordinating Anions

- I. Krossing, I. Raabe, Angew. Chem. 2004, 116, 2116-2142.
- I. Krossing, A. Reisinger, Coord. Chem. Rev. 2006, 250, 2721.
- T. Engesser, I. Krossing, *Coord. Chem. Rev.* **2013**, *257*, 946-955. I. Krossing, *Compr. Inorg. Chem. II*, Vol. 1, Chapter 1.26, **2013**, 681-705.

[Teflon] ...?

Surface C-F Bonds:

=> Teflon...!

Large Volume:

=> Cl⁻ < [PF₆]⁻ < "[Teflon]⁻" or 0.035 < 0.100 < 0.750 nm³

$[AI(OC(CF_3)_3)_4]^-$

X-ray Data => Unit Cell Volume V_{cell} => Division by Z => V_{m} ...!

Molecular Volume V_m...!

Molecular Volume $V_{\rm m}$: calc. vs. exp.

U. P. R. M. Preiss, J. M. Slattery, I. Krossing, Ind. Eng. Chem. Res. 2009, 48, 2290.

Volume Relations for Ionic Liquids

Error bars tabulated Ion Volumes: V_m([C₄MIM][BF₄]) = 269±30 Å³

Resolution: Van der Waals Volumes

- calc void option of Platon^{[1],[2]}
- assumption of fused spheres with fixed radii (here Bondi van der Waals radii)
- calculation of V_{vdw} by counting grid points inside the spheres
- packing index P (in %) as output

$$V_{\rm vdw,r} = \frac{V_{\rm cell} \cdot P}{Z \cdot 100}$$

Temperature Dependence...?

[1] A.L.Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2005 [2] P. van der Sluis and A. L. Spek, Acta Crystallographica Section A, 1990, 46, 194.

T-dependence of V_{vdw,r}

Almost no temperature dependence of $V_{vdw,r}$...!

ChemPhysChem **2013**, *14*, 3221–3226; PCCP **2013**, *15*, 8821–8830; Angew. Chem. Int. Ed. Engl. **2014**, *53*, 3143–3146; Z. Anorg. Allg. Chem. **2013**, *639*, 2153-2161.

Ion volume partitioning

$$V_{\rm vdw,r} = V_{\rm vdw,r}^+ + V_{\rm vdw,r}^-$$

Fixed volumes of halides based on r_{vdw} (Bondi)^[1] and fixed volumes of [BF₄]⁻, [PF₆]⁻, [OTf]⁻ and [NTf₂]⁻ via a triangulation approach.

> 17 cation volumes were derived

> Only one crystal structure is sufficient for the consistent calculation of $V_{vdw,r}^{+/-}$

> In agreement with exp. Charge Density Determination of IL.

[1] A. Bondi, J. Phys. Chem. 1954, 58, 929.

lon	V _{vdw,r} +/-/Å ³	No. of compounds/crystal structures
[BF ₄] ⁻	50±1.2	4/5
[PF ₆] ⁻	69±0.3	16/27
[OTf] ⁻	80±0.2	8/9
[NTf ₂] ⁻	147±0.7	41/41
[C ₂ MIM] ⁺	110±1.4	7/13
$[C_4MIM]^+$	142±1.5	6/13
$[C_2C_1MIM]^+$	126±0	1/1
$[C_4C_1MIM]^+$	157±0.8	4/15
$[C_2C_1Pyrr]^+$	124±0.7	1/1
$[C_4C_1Pyrr]^+$	158±0.7	1/1
[C ₄ Py] ⁺	137±0	1/1
[N _{2,2,2,2}] ⁺	149±2.5	3/9
[N _{4,4,4,4}] ⁺	276±1.6	2/5

ChemPhysChem **2013**, 14, 3221–3226 ;

Angew. Chem. Int. Ed. Engl. 2014, 53, 3143-3146.

MELTING POINT PREDICTIONS

On the usefulness of the molecular Volume $V_{\rm m}$ and Radius $r_{\rm m}$

Basic Thermodynamics of Melting

$$\Delta G = \Delta H - T \Delta S$$

$$T_{\rm fus} = rac{\Delta_{
m fus} H}{\Delta_{
m fus} S}$$

=> at the exp. M.P.: $\Delta G = 0$

A. Jain, S. H. Yalkowsky, *J. Pharm. Sci.* 2006, *95*, 2562. L. Zhao, S. H. Yalkowsky, *Ind. Eng. Chem. Res.* 1999, *38*, 3581. R.-M. Dannenfelser, S. H. Yalkowsky, *Ind. Eng. Chem. Res.* 1996, *35*, 1483.

Melting Entropy $\Delta_{fus}S$

•
$$\Delta_{fus}S = a \cdot \log \sigma + b \cdot \tau + c$$

 σ = number of possible equal orientations in the crystal $\sigma = \sqrt{\sigma^+ \sigma^-}$

 σ is a symmetry number, only rotational axis C_n or S_n but no mirror planes are counted; usually σ represents the index n of the highest C_n or S_n axis.

• τ = number of torsion angles that lead to a new conformation.

J. Phys. Chem. B 2010, 114, 11113-11140.

Melting Enthalpy $\Delta_{fus}H$

Δ_{fus}H was approximated as a function of the molecular volume:

$$\Delta_{\text{fus}}H = F(V_{\text{m}}) \text{ or } F(r_{\text{m}})$$
 $r_{\text{m}} = r_{\text{m}}^{+} + r_{\text{m}}^{-}$ $r_{\text{m}}^{\pm} = \sqrt[3]{\frac{3V_{\text{ion}}^{\pm}}{4\pi}}$

• Neglects directed interactions, i.e.:

N-H in [C₆Py][NTf₂]: 242.3 pm

J. Phys. Chem. B 2010, 114, 11113-11140.

- M.P.'s of 24 model compounds with [Al(OC(CF₃)₂R)₄]⁻ (R = H/ CH₃/CF₃) and [B(OC(CF₃)₂H)₄]⁻ counterion.
- **Reason:** quasi-isotropicity and very weak coordination ability make the far ordering in the lattice of their salts comparable

J. Phys. Chem. B 2010, 114, 11113-11140.

Results Test Set I

J. Phys. Chem. B 2010, 114, 11113-11140.

Similarities and Differences: NEt₄⁺ Salts...

Extension to different Anions and Cations:

Formula also true for other sets with varying anions:

- larger deviations => different conformations...!

- unaccounted for as of now.

$$T_{\rm fus} / \rm K = \frac{c \cdot r_m^3}{a \cdot \ln \sigma + b \cdot \tau + 1}$$

Nevertheless:

=> united set of 67 ILs (including aluminates/borates plus 10 different anions, 39 different cations, range(T_{fus}) = 337 °C) => Formula yields **average error** of **36.4** °C, r² = **0.6746**

J. Phys. Chem. B 2010, 114, 11113-11140.

Automated model for τ

 $\tau = \Sigma(1,5-0,5\cdot BO_{max}(i))$

i = skeletal atom (without rings); BO_{max} = highest PABOON-bond order at this atom

- Skeletal atoms are 2 C- and 1 O-atom; the highest bond orders to the neighboring atoms are given.
- To consider: 2x 1,3378 and 1x 1,0778 for BO_{max}
- → τ = 2,6233

ChemPhysChem 2011, 12, 2959-2972.

Automated Protocol tested for 520 Salts

520 very different organic 1:1-Salts; M.P.-range: 341 °C.

$$T_{\text{fus}} = \frac{b_1 \cdot V_m + b_2 \cdot \hat{S} + b_3 \cdot \Delta_{\text{solv}} H^{\infty}}{a_1 \cdot \ln \sigma + a_2 \cdot \tau + 1} \quad \text{err}_{\sigma} = 36.1 \,^{\circ}\text{C}$$

Inclusion of directed interactions by COSMO-RS:

$$T_{\text{fus}} = \frac{\mathbf{b}_1 \cdot \mathbf{V}_{\text{m}} + \mathbf{b}_2 \cdot \hat{\mathbf{S}} + \mathbf{b}_3 \cdot \Delta_{\text{solv}} \mathbf{H}^{\infty} + \mathbf{b}_4 \cdot \mathbf{H}_{\text{HB}}^0 + \mathbf{b}_5 \cdot \mathbf{H}_{\text{MF}}^0 + \mathbf{b}_6 \cdot \mathbf{TS}_{\text{g}}^0}{\mathbf{a}_1 \cdot \ln \sigma + \mathbf{a}_2 \cdot \tau + \mathbf{a}_3 \cdot \alpha + 1}$$

ChemPhysChem 2011, 12, 2959-2972.

err_ø = 33.5 °C

Is Universal Melting Point Prediction Possible...?

Addresses:

- Contamination
- Phase Behavior
- Liquid Crystals
- Plastic Crystals
 - Pressure
 - Disorder
 - Defects
- Decomposition
- DSC Calibration
- Thermal History

...and automated thermodynamic Melting Point Prediction....!

ChemPhysChem **2011**, *12*, 2959 – 2972.

Cosmotherm, IL-Prop-Module

00		Giobal Options	Moture Options Parametrization: BP_TZVP_G21_0	110 ctd 27,0/64.9 MB	
Compound Compounds Jobs		Mixture Vapor Pressure Boiling Point	Temperature 25.0 Degree C Add Selecte	elvin 🔘 Fahrenheit	
13 12n	tt2n_anion	Activity Coefficient	Cation list	Anion list	
50 1-DUG	T-bugi-1-methyl-pytrolidinium_cation	Henry Constant			
2 004,3	ma_anon cosmo	Gas-Solubility	1-butyl-1-methyl-pyrrolidinium_cation	614_anion.cosmo	
		Solubility	1-etny-3-metny-imidazoium_cation	tizn_anion	
		Solvent Screening			
		Salt Solubility			
		Salt Solubility Screening			
		log P / log D	Remove Cations	, A	temove Anions
		рКа	Select methods to calculate (some are set as defau	0	
		VLE/LLE			- Contract Contract
		SLE	COSMOtherm Job Status		Advanced and in
		Flatsurf			
		Density			Advanced and in
		Viscosity	0:09.7		
		Mix QSPR	job 1/1		Advanced and In
		Similarity			
		Liquid Extraction	1-ethyl-3-methyl-imidazoinum_cation		Advanced and in
		Reaction	TT2A_00100		-
		COSMOmic			Advanced and in
		IL-Props			Advanced and in
					Advanced and In
Ma	Manage Compounds		Defaults Add All Combinations	Add Selection of Combinations	- Une L'arters Option
Activ	Activate conformer treatment	MP DV tc=25.0 combi=4 #	Calculation for DBU-Project		Delete Selecte
s	SVP.DB TZVP.DB				Clear All
ISC	ISOCAV DB DMOL3 DB				Save As
File	File Manager Open List				
New	New Molecule Clear				Run

How does the size and nature of an IL-Ion influence the IL-Properties...?

Ion Size vs. Physical Properties

Chem. Eur. J. **2009**, 15, 1966-1976; *Chem. Eur. J.* **2010**, *16*, 13139-13154; *ChemPhysChem* **2011**, *12*, DOI: 10.1002/cphc.201100214; *Dalton Trans*. **2011**, 1448-1452; *ChemPhysChem* **2012**, *13*, 1802-1805; *Chem. Eur. J.* **2014**, *20*, DOI: 10.1002/chem.201400168.

Comparing the Viscosities: [NTf₂]⁻ vs. [Al(hfip)₄]⁻ ILs

Inspecting the Conductivities: Why are the [Al(hfip)₄]⁻ ILs so well conducting?

Results – Diffusion NMR-Measurements

Volume [NTf₂]⁻: 0.230 nm³

Volume [Al(hfip)₄]⁻: 0.581 nm³

Ionicities: I = $\sigma_{exp}/\sigma_{calc}$

Chem. Eur. J. 2014, 20, 9794-9804.

Energy Barrier for Ion Diffusion...

Chem. Eur. J. 2014, 20, 9794-9804.

With: Fraunhofer ICT, Dr. Jens Tübke in press with *ChemElectroChem* **2015**

Changing 'Al' for 'B' in $[M(OR^F)_4]^-$

=> Al-O more polar than B-O...! e) 5 d after water addition hfipH hfipH * * 5.0 4.8 4.2 ppm -74 -75 4.6 4.4 -76 ppm After 5 days exposure to water, slight hydrolysis (< 1 %)...

> $[C_nMIM]^+[a]$ $[C_nMMIM]^+[c]$ [AllylMIM]^+[b]

[C₄MMorph]⁺ [d]

Dalton Trans. 2011, 40, 8114-8124.

Changing 'Al' for 'B' in $[M(OR^F)_4]^-$

4 DME, toluene, NaBH₄ + 4 HOCH₂CF₃ Na[B(tfe)₄] 12 h reflux, -4H₂ (1) tfe = $O-CH_2-CF_3$ MeCN, 48 h; CH₂Cl₂ Na[B(tfe)₄] [Cat]Br [Cat][B(tfe)₄] -NaBr Cat = NR₄, (2) C_n(M)MIm c) 26. Day Waterstable...! b) What about the **Physical Properties...?** 1. Day a) ChemPhysChem 2014, 15, 3729-3731. ····· -74 -75 -76 -77 -78 -79 ppm

Comparison of Viscosities #1

Comparison of Melting Points

Melting Points from DSC Measurements:

Cation	[C₄MMIm]⁺	[C ₆ MIm]⁺	[C ₈ MIm]⁺	[N ₂₂₂₅] ⁺	[N ₁₈₈₈] ⁺	M, R ^F
mp./°C	58	45	28	89	4	B, tfe
mp./°C	68	< 0	-	-	-	B, hfip
mp./°C	< 0	5	< 0	< 0	< 0	Al, hfip

Li[B(OTfe)₄] for LiB/LiSB

ChemPhysChem 2014, in press.

Can we Establish pH Scales for ILs ...?

Barrhorn, CH

Brønsted Acidity in Ionic Liquids...!

Brønsted Acidity and Aluminates...?

Why is H(OEt₂)₂⁺[Al(OR^F)₄]⁻ such a good Initiator for Isobutene Polymerisation...?

Kat [mg]	T _{start}	ΔΤ	t	yield [g]	M _n	C(C₩₃) ₃ + a	S M _w /M _n	αin %
30	-60	60	1s	11,7	12211	ntermediat	e.4,3977	n.b.
20	-51	72	1s	11,7	10094 ≈ 100	55896 % within 1 sec	5,5374 cond !	n.b.
10	-50	65	1s	11,6	13923	66518	4,7777	n.b.
5	-50	64	1s	12,3	12025	64045	5,326	n.b.

= 4 µmol => for comparison: typical load of normal initiator =250-500 µmol...!

=> Also very high α -selectivity (\approx 95 %)

$$H(OEt_2)_2^+ + H_2C=C(CH_3)_2$$

 $\begin{array}{l} \text{Gas phase} \\ \longrightarrow \\ \textbf{C}(CH_3)_3^+ + 2 \text{ OEt}_2 \\ \textbf{\Delta}_r \textbf{G}^\circ = + 107 \text{ kJ mol}^{-1} (MP2/def2-QZVPP) \end{array}$

Four Patents with BASF AG, 2006-2010.

A Unified Brønsted Acidity scale...!

Acidity in The Liquid Phase: pH Scales

HA_(solv) H^+ _(solv) H^+ _(solv) H^- _(solv)

pH value: $pH = -log(a(H^+, solv.))$

For ΔpH = Δa(H⁺) = 1 holds: RT ln Δa(H⁺) = 2.303 RT log(10) = 5.71 kJ mol⁻¹ at T = 298.15K.

Scales: => Specific for each solvent (Water, AN, DMSO, ...)

=> Use pK_a -value and activities to assess pH value for comparison of acidity in **one medium**.

Using the Anchor Points: Definition of non-standard potentials and absolute pH_{abs}

 $\mu_{abs}(H^+, solv) = \Delta_{solv}G^0(H^+) - pH \cdot 5.71 \text{ kJ mol}^{-1}$

Assessing pH: Using experimental or calculated pK_a -values

pH for weak acids HB: Medium strong acids: Strong acids HB:
$$\begin{split} pH &= \frac{1}{2}(pK_{a} - lg(a(B_{solv.})), \\ pH &= -log(-K_{a}/2 + (K_{a}^{2}/4 + K_{a}^{*}c_{0}/1M)^{1/2} \\ pH &= -lg(a(B_{solv.})) \end{split}$$

$$pH_{abs} = \frac{\mu_{abs}(H_{(solv)}^{+})}{-5.71 \text{ kJ mol}^{-1}}$$

Anchor Points: Standard Gibbs Solvation Energies of the Proton

$\mu_{abs}^{0}(H^+) = \Delta_{solv}G^{0}(H^+, g \rightarrow solv)$ (in kJ mol ⁻¹)					
NH ₃ (fl.)	-1202	Pyridine	-1133		
NMP	-1130	DMSO	-1124		
DMF	-1119	Water	-1105		
1-BuOH	-1101	EMIMBr	-1101		
EG	-1101	PG	-1099		
1-PrOH	-1096	MeOH	-1094		
EtOH	-1093	PhNO ₂	-1071		
HMPT	-1065	MeCN	-1058		
PC	-1055	MeNO ₂	-1010		
Et ₂ O	-998	Sulfuric acid	-966		
HCl, gas 10 ⁻³ bar	<i>-930</i>	Fluorosulfuric acid	-924		
hydrogen fluoride	-908	Sulfur dioxide	-898		
dichloromethane	-834	Benzene	-816		

Chem. Eur. J. 2014, 20, 4194-4211. (VIP-paper)

- Cf. Gaseous AlBr₃ is a Lewis Superacid (FIA 505 kJ mol⁻¹).

- Bromoaluminates are Pearson-soft anions and should destabilize proton coordination.

- Cf. D. Farcasiu, S. L. Fisk, M. T. Melchior, K. D. Rose, J. Org. Chem. **1982**, 47, 453 for an NMR study showing similar acidity to HF/SbF_5 .

FIA(AIX₃) in Gaseous and Solid Phase

$IVIX_3 + F \rightarrow F - IVIX_3 - \Delta H = ?$					
	MX ₃ (g)	AlX ₃ (s)	∆(g-s)		
AICl ₃	502	376	126		
AlBr ₃	505	404	101		
All ₃	(535)	429	106		
GaCl ₃	429	-	-		
GaBr ₃	426	-	-		
Gal ₃	(457)	-	-		

Calc. @ ccsd(t)/DZ→QZ//MP2/QZVPP

Solid AlBr₃ and AlI₃ are clearly stronger Lewis acids.

=> F(C.N.): Sublimation enthalpies for X = Br, I lower than for X = Cl

How acidic can you get with HBr/AlBr₃...?

Limiting Factor: Solvents / Media

=> Case Studies: simple Carbocations

Chem. Eur. J. 2015, in press, ChemPhysChem 2015, in press.

How acidic can you get with HBr/AlBr₃...?

	Medium	µ _{abs} (H⁺)**	pH_{abs}
	C ₆ MIMBr *	-1159	203
	H ₂ O *	-1145	201
n	BMIMAICI ₄ *	-1132	198
cre	BMIMAIBr ₄ *	-1127	197
asi	0.1 M HBr/C ₆ MIMBr	-1119	196
ng	1 M HCI/H ₂ O	-1105	194
Ac	0.1 M AICI ₃ + 0.1M HCI/C ₆ MIMAICI ₄	-984	172
idi	H ₂ SO ₄ *	-975	171
-	0.1 M AlBr ₃ + 0.1M HBr/C ₆ MIMAlBr ₄	-974	171
	0.1 M tBu[FSO ₃] (from tBu-OH in HSO ₃ F)	-963	169
	0.1 M AlBr ₃ + 0.1M HBr /C ₆ MIMAl ₂ Br ₇	-958	168
	HF*	-944	165
	0.1 M AlBr ₃ + 0.1M HBr /C ₆ MIMAl ₃ Br ₁₀	-938	164
	1 M SbF ₅ /HF	-908	159

* pH from autoprotolysis; ** in kJ mol-1.

Compound calculations, rCCC model, Error bar 10 to 15 kJ mol⁻¹ *Chem. Eur. J.* **2015**, in press, *ChemPhysChem* **2015**, in press.

Daniel Himmel

How acidic can you get with HBr/AlBr₃...?

A Superacidic Ionic Liquid...!

Formation and Thermodynamics

Chem. Eur. J. 2013, 19, 109-116.

F. Scholz, 2010-13

Energetics Protonated Benzene from AlBr₃/HBr

Standard Gibbs Energies throughout:

Angew. Chem. Int. Ed. Engl. 2014, online available. DOI: 10.1002/ange.201308120.

* U. Preiss, S. P. Verevkin, T. Koslowski, I. Krossing, Chem. Eur. J. 2011, 17, 6508-6517. U. Preiss, V. N. Emel'yanenko, S. P. Verevkin, D. Himmel, Y. U. Paulechka, I. Krossing, ChemPhysChem 2010, 11, 3425-3431.

How acid	ic can you get with HBr/AlBr ₃	2
Acid / Cation	Medium: HSAB-Hard vs. HSAB-Soft	pH _{abs}
c(cu.) +	0.1 M in HSO ₃ F	168
C(CH ₃) ₃	$[C(CH_3)_3]^+[Al_2Br_7]^-$ neat liquid	171
	0.1 M in Difluorobenzene ([Al(OR ^F) ₄] ⁻ Anion)	164
11/04	0.1 M in $SO_2([Al(OR^F)_4]^- Anion)$	164
H(iviesityiene) [*]	0.1 M in [BMP][Al ₂ Br ₇]	170
	0.1 M in [BMP][Al ₃ Br ₁₀]	169
U/Benzene)+	100 % Protonation in HF/SbF ₅	156
H(Benzene).	0.1 M in HBr/AlBr ₃ melt	163

Advanced Grant 2012-2017

2D-Plot of Absolute Electrochemical and Protochemical Potentials

THE PROTOELECTRIC POTENTIAL MAP

Angew. Chem., Int. Ed. Engl. **2010**, 49, 6885-6888. Chem. Eur. J. **2011**, 17, 5808-5826 (**VIP-paper**). Chem. Eur. J. **2012**, 18, 9333-9340. Chem. Eur. J. **2014**, 20, 4194-4211(**VIP-paper**).

Definition of Reference States

Angew. Chem., Int. Ed. Engl. **2010**, 49, 6885-6888. Chem. Eur. J. **2011**, 17, 5808-5826 (VIP-paper). Chem. Eur. J. **2012**, 18, 9333-9340. Chem. Eur. J. 2014, 20, 4194-4211(VIP-paper).

The Alliance of pH_{abs} and pe_{abs}

General Setup - Experimental Realization

Dr. Valentin Radtke Dr. Daniel Himmel Katharina Pütz Andreas Ermantraut

2012 - 2015

Determination of Redoxpotentials_E vs. RE OCV (Open Circuit Voltage)_ Both Half Cells in Equilibrium

Experimental Setup in Argon Glove Box

Experimental Setup in Argon Glove box

RHE in Non-Aqueous Solvents:

- Acetonitrile (AN)
- Propylene Carbonate (PC)
- EmimNTf₂
- DMSO
- Ethanol (EtOH)

RHE in [Hmim]Br

Establishment of Different Reference Systems

Ag in Acidic [Hmim]Br

Is Ag a Noble Metal in this Medium....?

E(Ag⁺/Ag) vs. RHE* in [Hmim]Br at Different pH Values

E(Ag⁺/Ag) vs. RHE* in [Hmim]Br at Different pH Values

AgPf 0.01 mol/l Variation of pH value via HBr concentration

*RHE (Reversible Hydrogen Electrode)

QM_BFHC_Ag⁺/Ag and H⁺/H₂ in [Hmim]Br at Standard Conditions

E(Ag⁺/Ag) vs. RHE in [Hmim]Br at Different pH Values

Dissolution of Silver in Acidic [Hmim]Br

 $\operatorname{Ag}^{0}_{\operatorname{solid}} + 2[\operatorname{Hmim}]\operatorname{Br} + \operatorname{H}^{+}_{\operatorname{solv}} \rightarrow [\operatorname{AgBr}_{2}]^{-}[\operatorname{Hmim}]^{+} + 0.5\operatorname{H}_{2} + [\operatorname{Hmim}]^{+}$ Addition of water $\longrightarrow \operatorname{AgBr} \downarrow$, dissolution with KCN for AAS

		AAS [ppm]	Weight [mg]	Visual Inspection
	Solution 1 pH=0, 32 days	-	0,51 (whole flake)	dissolved completely
Ag-Flake	Solution 2 pH=0.5, 19 days	128	0,87 (whole flake)	dissolved completely
	Solution <u>1</u> pH=0, 32 days	-	15,03	affected
Ag-Wire	Solution 2 pH=0.5, 19 days	747	4,76	affected
	Solution 3 pure HmimBr, > 6 month	<0,5	-	unchanged

