Bis((dialkylamino)alkylselenolato)metalcomplexes as precursors in the syntheses of metal selenide nanoparticles in [BMIm][BF₄]

by Karsten Klauke Heinrich-Heine-Universität Düsseldorf

hjen haining

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Metal chalcogenides

- Various properties and aplications
 - Semiconductivity^[1,2,3,4]
 - Nonlinear optical properties ^[2]
 - Superconductivity
 - Electron tunneling^[2]
 - Thermoelectrically properties
 - Catalytic activity

- Solar cells^[1,3]
- Detector materials^[3]
- Photo resistors^[3]
- Telecommunication devices^[3,4]
- Switching elements
- Bioengineering^[4]

[1] Matthew L., J. Chem. Ed., 2014, 91, 274-279

[2] Sugimoto T.; *Elsevier*, Amsterdam, London, New York, 2001, 792
[3] J. Akhtar, J. C. Bruce et. al., *Mater. Res. Soc. Symp. Proc.* 2009, 1148-PP12-08

[4] N. Moloto, Dissertation , 2010, University of the Witwatersrand

SPP 1708

viel hum

FRSITÄT DÜSSELDOR

Semiconductor nanocrystals

- Novel properties (electron tunneling, size quantization of energy levels ^[1,2]), result in applications in various fields (telecommunication systems, optoelectronics, IR detectors, solar cells, photorisistors ^[3], catalysis and bioengineering)
- Discretization of the electronic energy levels beneath 7.6 nm (particle in the box)
- Hypsochromic shift of the absorption due to quantum confinement
- [1] Matthew L., J. Chem. Ed., 2014, 91, 274-279
- [2] Sugimoto T.; *Elsevier*, Amsterdam, London, New York, 2001, 792
 [3] J. Akhtar, J. C. Bruce et. al., *Mater. Res. Soc. Symp. Proc.* 2009, 1148-PP12-08

SPP 1708

raf hjenn

Hot Injection Method^[1]

- In the classical synthesis metal chalcogenide quantum dots are produced by simultaneously injecting metal and selenium precursor solutions into a heated growth solution of octadecene
- The particle size can be varied by the reaction time and the temperature
- Usually these particles are stabilized by stabilizing agents such as hexadecylamine (HDA) or trioctylphosphine (TOP)

Single source precursors for metal chalcogenide nanoparticles

HEINRICH HEINE

[5] V. K. Jain *et al.*, *Dalton Trans.*, 2006, 2714–2718
[6] V. K. Jain *et al.*, *Inorg. Chim. Ac.* 2011, **365**, 333–339
[7] V. K. Jain *et al.*; *Polyhedron* 2006, **25**, 2383–2391

[8] J. Akhtar, P. O`Brien et al, Eur. J. Inorg. Chem. 2011, 2984–2990

CdSe NPs in [BMIm][BF₄]

hjein

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

1 2 3	Precursor	Yield [%]	∆m [%]	Δm _{theor.} [%]	Decomp. temp. [°C]	CdSe crystal system ^a
	1	61	38	35	150	hexagonal P6₃mc
	2	42	39	39	165	hexagonal P6 ₃ mc
	3	18	39	39	155	hexagonal P6 ₃ mc

^a From PXRD analysis of the residue of the thermal analysis (hexagonal CdSe, reference: COD- database: 9008863).

[7] V. K. Jain et al.; Polyhedron 2006, 25, 2383–2391

CdSeNPs in [BMIm][BF ₄] $MW, 250 \text{°C}, \\ 15 \text{ Min}$ OO $MW, 250 \text{°C}, \\ 10 \text{ Min}$ OO $MW, 250 \text{°C}, \\ 10 \text{ Min}$ OO $OO2$								
[BMIm][BF ₄] CdSe NPs				N Ps	ed]	0.8 - (011) (013) (022) (112)		
Precursor	NPs	Ø-NPs TEM [nm]	Ø-NPs PXRD [nm]	crystal system	ntensity [normaliz	$\begin{array}{c} 0.6 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.12 \\$		
1 (5min)	CdSe	20.0 ± 2.9	10.5 ± 1.3	hexagonal (P6 ₃ mc)		0.2 - (023) (030) (224)		
2 (5min)	CdSe	11.9 ± 2.5	8.0 ± 0.8	hexagonal (P6 ₃ mc)				
3 (5min)	CdSe	9.3 ± 1.3	7.9 ± 0.7	hexagonal (P6 ₃ mc)		20 40 60 80		
1 (15min)	CdSe	27.3 ± 3.5	8.0 ± 1.8	hexagonal (P6 ₃ mc)	ref	eference: COD-database: 9008863 (CdSe), 9009006 (CdF ₂)		
2 (15 min)	CdSe	18.6 ± 2.9	9.6 ± 1.3	hexagonal (P6 ₃ mc)				
3 (15 min)	CdSe	10.9 ± 1.7	7.8 ± 0.5	hexagonal (P6 ₃ mc)				
Cd(OAc) ₂ +	CdSe +	_	22.9 ± 3.2	hexagonal (P6 ₃ mc)				
(Me ₂ NEtSe) ₂	CdF_2	-	38.6 ± 4.8	cubic (Fm-3m)				
Cd(OAc) ₂ +	CdSe +	40.0 + 0.5	22.5 ± 2.9	hexagonal (P6 ₃ mc)				
(Et ₂ NEtSe) ₂	CdF_2	10.3 ± 2.5	38.6 ± 4.8	cubic (Fm-3m)				
Cd(OAc) ₂ +	CdSe +	40.4 + 0.0	13.5 ± 0.6	hexagonal (P6 ₃ mc)				
(Me ₂ NPrSe) ₂	19.1 ± 2.3 Me ₂ NPrSe) ₂ CdF ₂ 30.5 ± 1.7 cubic (F		cubic (Fm-3m)		22 mil.			

						10
$\frac{\text{ZnSe NPs in in [BMIm][BF_4]}}{\text{ISMIm}[BF_4]} \xrightarrow{\text{MW, 250 °C,}}{\text{ISMIm}[BF_4]}$						$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$
Dreams		Ø-NPs	Ø-NPs		s [norma	2 Δ ZnK _{α1}
Precursor	NPS	I ⊨M [nm]	PXRD [nm]	crystal system	Counts	5 0.2 CuK _{α1} SeK _{α1}
4 (5min)	ZnSe	7.0 ± 1.9	4.0 ± 0.8	hexagonal (P6 ₃ mc)		
5 (5min)	ZnSe	4.7 ± 1.3	4.3 ± 0.4	cubic (F-43m)		0.0 // ,
6 (5min)	ZnSe	4.0 ± 0.9	4.3 ± 0.5	cubic (F-43m)		Energy [keV]
4 (15min)	ZnSe	5.0 ± 2.3	4.2 ± 0.4	cubic (F-43m)		
5 (15 min)	ZnSe	4.4 ± 1.1	4.8 ± 1.0	cubic (F-43m)		0.8 - (110) (002)
6 (15 min)	ZnSe	4,7 ± 2.1	4.5 ± 0.7	cubic (F-43m)	lized]	
Zn(OAc) ₂ +	7nSe	_	62+08	cubic (F-43m)	orma	$\begin{array}{c} 0.0 \\$
(Me ₂ NEtSe) ₂	21100	-	0.2 ± 0.0		sity [n	0.4 - (120) (121) (222) (112) (224) (222) (022
Zn(OAc) ₂ +	ZnSe +	_	5.8 ± 1.9	cubic (F-43m) cubic (Fm-3m)	Intens	
(Et ₂ NEtSe) ₂	ZnF_2	-	13.2 ± 0.8		-	
Zn(OAc) ₂ + (Me ₂ NPrSe) ₂	ZnSe	-	5.4 ± 0.5	cubic (F-43m)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

reference: COD-database: 9008857 (ZnSe) , 2103615(ZnF₂)

Conclusions and Outlook

Conclusions:

- Hexagonal CdSe NPs (10 27 nm)
- Hexagonal and cubic ZnSe NPs (4 5 nm)
- No further stabilizationing agents necessary
- Minor role of the ligandsystem and different decomposition times

Outlook:

- Synthesis of CdTe, ZnTe, CdZnSe₂, CdZnSeTe, and CdZnTe₂ in [BMIm][BF₄] and immobilization on TRGO
- Synthesis of other Semeiconductor-NPs in ioniq liquids and
- Optical and electronic measurements of the synthesized particles

Thanks to:

SPP 1708

Deutsche Forschungsgemeinschaft DFG Institut für Anorganische Chemie und Strukturchemie

Prof. Dr. Christoph Janiak Gamall Makhloufi Raquel Marcos Esteban Hajo Meyer Kai Schütte Susann Wegner Björn Hahn Vesko Ilievski

Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen

Dr. Juri Barthel

13

Thank you for your kind attention

14