Ionic liquids at surfaces and interfaces

F. Maier (florian.maier@fau.de)

Lehrstuhl Physikalische Chemie II, Universität Erlangen-Nürnberg

(Symposium on Material Synthesis in Ionic liquids and Interfacial Processes. April 13-15th 2016, Goslar)

Ionic Liquids meets Surface Science (2005)

Maier, Web of Science, ionic_liquid* in Topic, 16.5.2015

➔ What is an ionic liquid?

- Consists entirely of ions ("molten salt")
- Liquid below 100°C
- Physico-chemical properties tunable by varying the molecular structure
- Extremely low vapor pressure (<10⁻⁹ mbar at 300 K)

"...The vapour pressure of e.g. $[C_2C_1Im][EtOSO_3]$, is at room temperature in the same order of magnitude as the vapour pressure of a piece of iron..."

Prof. Andreas Heintz, University Rostock, private communication

Surface Science studies under UHV conditions are possible !!!!

Properties and applications of ionic liquids

➔ What is an ionic liquid?

- Consists entirely of ions ("molten salt")
- Liquid below 100°C
- Physico-chemical properties tunable by varying the molecular structure
- Extremely low vapor pressure (<10⁻⁹ mbar at 300 K)

Properties and applications of ionic liquids

➔ What is an ionic liquid?

- Consists entirely of ions ("molten salt")
- Liquid below 100°C
- Physico-chemical properties tunable by varying the molecular structure
- Extremely low vapor pressure (<10⁻⁹ mbar at 300 K)

Surface active species may strongly modify surface properties (surface tension, surface activity, ...)

J.M. Gottfried, F. Maier et al., Z. Phys. Chem., 2006, 220, 1439.

Why studying *interfaces* of ionic liquids?

SILP: Supported Ionic Liquid Phase - Riisager et al., *Ind. Eng. Chem. Res. 44 (2005) 9853 SCILL:* Solid Catalyst with Ionic Liquid Layer - Kernchen et al., *Chem. Eng. Technol. 8 (*2007) 985

Why studying *interfaces* of ionic liquids?

Concept: From simple to complex systems

Ionic Liquid Surface and Interface Science

Physical Chemistry II /PC-II **Chemical Reaction Engineering** group Prof. Dr. Hans-Peter Steinrück group Prof. Dr. Peter Wasserscheid SURFACE SCIENCE IONIC LIQUID CHEMISTRY Photoelectron spectroscopy (ARXPS) Surface properties

In-situ gas-phase reactions

- New IL structures. quality assessment
- Physico-chemical properties
- Metal complexes in ILs, IL catalysis

ILSS-project (2006-2012)

ENGINEERING OF ADVANCED MATERIALS

IL-solid interfaces (2008-2017)

Acknowledgements

Prof. Dr. Peter Wasserscheid

cr

Reaktionstechnik

P. Schulz

N. Taccardi

N. Paape

W. Wei

M. Bahlmann J. Schwegler

Prof. Dr. Hans-Peter Steinrück

C. Kolbeck I. Niedermaier

T. Cremer

F. Rietzler

B. May

P. Schreiber

K. Lovelock

B. Heller

A. Deyko **Collaborations:**

- P. Licence, R. Jones,
- B. Kirchner, A. Fröba,
- J. Libuda, S. Baldelli,
- J. Behm, J. Schatz,
- J. Lopes ...

Supported by: DFG (SPP 1191, CoE-EAM, STE 620/9-1), A.v.Humboldt- and Max-Buchner-Stiftung, Industry

Surface and Interface Science of Ionic Liquids

1. Surface composition of ILs

2. "Bulk", in-situ reactions

3. IL - solid interfaces

X-ray photoelectron spectroscopy (XPS)

Angle-resolved XPS (ARXPS)

variation of surface sensitivity by varying electron detection angle

Key message

 $0^{\circ} \Rightarrow 80^{\circ}$: Intensity of one species increases

 \rightarrow enhancement of that species at surface region

correlation with surface tension

Jiang et al. J. Phys. Chem. C **2008**, 112, 1132-1139.

Cation	Anion	V _m / nm³	σ / mN m ⁻¹	
[C ₁ C ₁ Im]+	[Tf ₂ N] ⁻	0.400	36.3	Kolbeck, Lehmann, Paape et <i>al.</i> ,
[C₄C₁lm]+	[Tf ₂ N] ⁻	0.485	30.7	J. Phys. Chem. B, 2010 , 114, 17025
[C ₈ C ₁ Im]+	[Tf ₂ N] ⁻	0.603	29.5 🕇	(Fröba, Wasserscheid, Steinrück) —

Influence of the anion on surface composition

Influence of the anion

→ from small (strongly coordinating) to large (weakly coordinating)

Influence of the anion on surface composition

Ionic liquid molecular volume (using density) / nm³

Kolbeck et al., J. Phys. Chem. B, 2009, 113, 8682-8688.

Maier et al., PCCP, 2010, 12, 1905-1915. Lovelock et al., Chem. Soc. Rev., 2010, 110, 5158–5190.

Surface composition of non-functionalized ILs

TEMPERATURE - Dependence

Surface enrichment less pronounced at higher temperature

Due to entropic effects

Kolbeck et al., ChemPhysChem 14 (2013) 3726

Surface composition of functionalized ILs

0° / <mark>80</mark>°

- Surface enrichment of CI and Calkyl
- Surface depletion of O, S and N

Niedermaier *et al. ChemPhysChem.* 13 (**2012)** 1725 C. Kolbeck et al., *Chem. Eur. J.* 20 (**2014)** 3954

➔ Surface orientation depends on interplay between

- \rightarrow ionic head group interaction
- \rightarrow functional groups/alkyl chain interaction and
- \rightarrow interaction between ionic head groups and functional groups

→ general conclusions

C. Kolbeck et al., *Chem. Eur. J.* 20 (**2014)** 3954 H.-P. Steinrück, *Phys. Chem. Chem. Phys.* 14 (**2012**) 5010

Surface composition of functionalized ILs

- 1) weak interactions between functional units and head groups:
 - → surface enrichment for long chains (n>4)
 → non-, halogen-, alkoxysilane-, amine- ,thioetherfunctionalized ILs
 - \rightarrow for functionalization of cation or anion.

2) **significant interactions** of functional group with head groups:

- \rightarrow inter-/intramolecular hydrogen bonding for ether groups
- \rightarrow quadrupole interactions for phenyl groups
- → surface enrichment **reduced** or even **suppressed**

C. Kolbeck et al., Chem. Eur. J. 20 (2014) 3954

Surface and Interface Science of Ionic Liquids

1. Surface composition of ILs

2. "Bulk", *in situ* reactions CO₂ capture by amines

3. IL - solid interfaces

In-situ XPS: amine reaction with CO₂

→ B. Gurkan et al., J. Am. Chem. Soc. 2010, 132, 2116–2117

In-situ XPS: amine reaction with CO₂

near-ambient pressure XPS: 0.9 mbar CO₂ (atmosphere: ~0.4 mbar partial pressure)

J. Pantförder, *Photoelektronenspektroskopie im "Pressure Gap" – Aufbau einer neuen Apparatur für Messungen im Druckbereich von 10-10 bis 1 mbar*, PhD thesis, **2004**, Uni Erlangen-Nürnberg

Surface (in situ) vs. bulk (ex situ)

 NH_2

OH

⁻O₃S

ÓΗ

→ at surface (1mbar): 0.6 CO₂ per 1 IL (mainly 1:1 carbamic acid)

⁻O₂S

→ in bulk (1 mbar): in bulk (1bar):

no CO₂ 0.15 CO₂ per IL (only 1:2 carbamate)

→ Niedermaier, Bahlmann, J. Am. Chem. Soc., 2014, 136, 436

Carbamic acid stabilised at surface (singly charged)

→ Niedermaier, Bahlmann, J. Am. Chem. Soc., 2014, 136, 436

Surface and Interface Science of Ionic Liquids

1. Surface composition of ILs

CH_HC

3. IL - solid interfaces

 H_2C

H₂Ć

Liquid organic hydrogen carrier (LOHC)

Brückner et al., ChemSusChem 2014, 7, 229

Liquid organic hydrogen carrier (LOHC)

Reversible hydrogenation (Ru) and dehydrogenation (Pt, Pd) of N-ethylcarbazole (NEC) and perhydro-N-ethylcarbazole (H₁₂-NEC)

➔ not observable in UHV (multilayer desorption > -30°C)

Synthesis of carbazole functionalized IL

DeHydrogenated IL

1-[6-(N-Carbazole)hexyl]-3-methylimidazolium trifluoromethanesulfonate

H₁₂-NEC

PerHydrogenated IL 1-[6-(N-dodecahydrocarbazole)hexyl]-3-methylimidazolium trifluoromethanesulfonate

XP spectra of PH-IL and DH-IL (350 K)

DH-IL

PH-IL

 $H_2 \qquad N_{PH} \qquad H_2$

N 1s spectrum reflects hydrogenation state of carbazole unit

Heat Matsuda, Taccardi, Schwegler et al., ChemPhysChem, **2015**, 16, 1873-1879

Experimental:

- \rightarrow VG-ESCALAB 200 (AI K_a, Δ E = 0.9 eV)
- \rightarrow Sample transfer system
- \rightarrow Pressure <10⁻⁸ mbar (clean UHV conditions)
- \rightarrow Equipped with QMS (PFEIFFER QMG220)

electron analyser

XPS of PH-IL on Pt

 H_2

H₂C

 $P_{H_2} = P_{H_2} = P_{H$

 H_2

XPS of PH-IL on Pt

or on Au

DH-IL

550K

540K

530K

520K

510K

500K

490K

480K

470K

460K

450K

400K

350K

396

398

 \rightarrow no catalyst (Au support): dehydrogenation & decomposition at T \geq 510K

XPS of PH-IL on Pt

\rightarrow dehydrogenation liquid H₁₂-NEC (supported Pt @ 500K)

Relative intensity: $r_{PH} = N_{PH}/(N_{PH} + N_{DH})$, $r_{DH} = N_{DH}/(N_{PH} + N_{DH})$ Mean heating rate: 0.002 K/s (XPS), 0.04 - 0.14 K/s (TDS)

LOHC – IL: Summary

- LOHC linked to non-reactive ILtag to reduce vapor pressure
- *in situ* reaction monitored (XPS, TDS) at equilibrium under UHV
- catalyzed dehydrogenation close to techn. conditions
- on Au dehydrogenation / decomposition at higher T (+30K)

Vacuum surface science meets heterogeneous catalysis: Dehydrogenation of a liquid organic hydrogen carrier in the liquid state *T. Matsuda, N. Taccardi, J. Schwegler et al., ChemPhysChem,* **2015**, *16*, 1873-1879

Surface and Interface Science of Ionic Liquids

1. Surface composition of ILs

2. "Bulk", in situ reactions

3. IL - solid interfaces

IL – solid interfaces studied by ARXPS

IL – solid interfaces studied by ARXPS

- in-situ preparation in UHV: physical vapor deposition of IL (ion pairs)
- sub-monolayer dosing (typically ~0.3 ML IL / min at 400 450 K)
- ➔ deposition of well-defined amount of clean IL on clean support

Interface [C₈C₁Im][Tf₂N] / Au(111)

- Subsequent IL multilayers
- Restructuring at d = 0.5 ML
- Checkerboard-like structure

Cremer et al., Langmuir, 2011, 27, 3662

Interface [C₄C₁Pyr][Tf₂N] "BMP-TFSA" / Au(111)

U = -1.8 V, I = -0.060 nA, T = 102 K

[C₄C₁Pyr][Tf₂N] layer

[1-butyl-1-methylpyrrolidinium-bis(trifluoromethylsulfonyl)imide

- STM: At 300 K highly mobile 2D liquid phase
- Disordered 2D amorphous phase next to well ordered 2D crystalline layer at T < 200 K</p>
- XPS & STM: checkerboard-like structure
 - \rightarrow cations and anions in contact with surface
 - \rightarrow alkyl chains sticking out
 - \rightarrow anion in cis-conformation (CF₃ groups towards vacuum)

Uhl, Cremer, Maier, Steinrück, Behm, PCCP, 2013, 15, 17295

Interface [C₄C₁Pyr][Tf₂N] "BMP-TFSA" / Au(111)

Buchner, Uhl, Behm et al., ACS Nano, 2015, 7, 7773

Interface [C₁C₁Im][Tf₂N] / Ni(111)

➔ Enhancement of anion-related species for d < 1ML</p>

→ Rearrangement to checkerboard structure at higher film thickness

→ Rearrangement from **bilayer** to **checkerboard** structure with coverage

Cremer et al., PCCP, 2012, 14, 5153

Reactions of ultrathin IL layers on solid surfaces

 $0.7 \text{ ML} [C_1 C_1 \text{Im}] [Tf_2 \text{N}]$

- 0.7 ML $[C_1C_1Im][Tf_2N]$ on Ni(111) + Heating:
- Cation + anion thermally desorbs as neutral ion pairs at ~400K
- 0.7 ML [C₁C₁Im][Tf₂N] on NiO + Heating
- Cation desorbs first, starting at 400K
- Anion + decomposition of NiO at T>500K
- →cation with OH ⁻ surface groups (volatile), [Tf₂N]⁻ at Ni²⁺ site still stable

Cremer et al., PCCP, 2012, 14, 5153

IL growth behaviour: Au(111) vs Ni(111)

ENGINEERING OF ADVANCED MATERIALS

Perfect agreement between 0° and 80°

- Sectionwise decay not resolved (layer completed at 0.5 ML)
- → Layer-by-layer growth

- Sectionwise decay resolved within first monolayer
- 80° data deviates from calculated damping curve
- → Wetting layer followed by mixed growth (2D → 3D)

IL growth behaviour: Au(111) vs Ni(111)

Unstable ILs: alternative deposition methods

- ENGINEERING OF ADVANCED MATERIALS
- in-situ preparation in UHV: physical vapor deposition of IL (ion pairs)
- sub-monolayer dosing (typically ~0.3 ML IL / min at 400 450 K)
- ➔ deposition of well-defined amount of clean IL on clean support

IL-ESID concept

pumping stages

F. Rietzler et al., Langmuir, 2014, 30, 1063

Growth behaviour [C₈C₁Im]Cl on Au(111)

θ <1st closed layer

data agree with ideal 2D growth \rightarrow formation of a wetting layer

Au(111)

θ > 1st closed layer

[C₈C₁Im]Cl

80° data above ideal curve → indication for 3D growth

F. Rietzler et al., Langmuir, 2014, 30, 1063

IL-ESID: $[C_8C_1Im]CI / Au(111)$

Atomic force microscopy (AFM) measurements

- nominal IL coverage: ~ 50 ML on epitaxial Au(111)/mica
- ex-situ AFM measurements (ambient conditions)

F. Rietzler et al., Langmuir, 2014, 30, 1063

Discussion

Influence of interionic interactions on growth mode

 stronger interionic interactions (particularly stronger hydrogen bonding) between an imidazolium cation and Cl⁻ compared to Tf₂N⁻,

Influence of IL / solid interface on growth mode

[C₈C₁Im]Cl⁻

non-polar outer surface of the wetting layer due to densely packed octyl chains

- \rightarrow weak bonding of further deposited IL molecules to wetting layer
- → island nucleation

$[C_8C_1Im][Tf_2N]$

lower packing density of octyl chains

- \rightarrow more open structure
- \rightarrow prevention of early island nucleation
- \rightarrow layer-by-layer growth

Summary: Surf. Sci. gives "close look at the interface"

Role of carbon for IL film growth

[C₁C₁Im][Tf₂N] on HOPG

no wetting for macroscopic amounts

(II)

(III)

Role of carbon for IL film growth

[C₁C₁Im][Tf₂N] on HOPG

no wetting for macroscopic amounts

onto 1ML graphene / Ni(111)

medium wetting, checkerboard ads.

Role of carbon for IL film growth

[C₁C₁Im][Tf₂N] on HOPG

no wetting for macroscopic amounts

Nominal thickness / nm

onto 1ML graphene / Ni(111)

Surface and Interface Science of Ionic Liquids

1. Surface composition of ILs

2. "Bulk", in-situ reactions

3. IL - solid interfaces

Angle-resolved XPS (ARXPS)

variation of surface sensitivity by varying electron detection angle

How to measure ARXPS without tilting a liquid sample?

Angle-resolved XPS (ARXPS)

variation of surface sensitivity by varying electron detection angle

How to measure ARXPS without tilting a liquid sample?
→ 2 analysers mounted in 0° and 80°

Dual Analyser System for Surface Analysis (DASSA)

Development of a new ARXPS system 2010-2014 together with Omicron dedicated for liquid systems

Dual Analyser System for Surface Analysis (DASSA)

Development of a new ARXPS system 2010-2014 together with Omicron dedicated for liquid systems

Development of a new ARXPS system 2010-2014 together with Omicron dedicated for liquid systems

Dual analyzer system for surface analysis dedicated for angleresolved photoelectron spectroscopy at liquid surfaces and interfaces, I. Niedermaier, C. Kolbeck, H.-P. Steinrück, F. Maier, Rev. Sci. Instrum. 87, 045105 (2016) DOI: 10.1063/1.4942943

Surface and Interface Science of Ionic Liquids

5 years ERC advanced grant:

Ionic Liquid Interface **Dynamics** (H.-P. Steinrück)

(→ Postdoc)

Who are we looking for?

a) <u>1 Postdoc:</u> General experience in UHV-based surface science, solid knowledge of one of the following methods at least: XPS, STM/AFM and molecular beam techniques
 b) <u>2-3 PhD-Students:</u> MSc in chemistry (focus physical chemistry) or physics, ideally with experience in surface science and/or ionic liquids

What do we offer?

- Postdoc (full position, E13), PhD (1/2 E13); employment, payment, and social benefits are determined by the German Public Sector Collective Agreement
- Contract duration: Postdoc: initially 1 year, extendable; PhD: 3 years
- Start date: July 1, 2016 or later

Remarks

The project will be funded through an ERC Advanced Grant, embedded in the research environment of the Cluster-of-Excellence "Engineering of Advanced Materials" (EAM).

Acknowledgements

Prof. Dr. Peter Wasserscheid

cr

Reaktionstechnik

P. Schulz

N. Taccardi

N. Paape

W. Wei

M. Bahlmann J. Schwegler

Prof. Dr. Hans-Peter Steinrück

C. Kolbeck I. Niedermaier

T. Cremer

F. Rietzler

B. May

P. Schreiber

K. Lovelock

B. Heller

T. Matsuda **Collaborations:**

- P. Licence, R. Jones,
- B. Kirchner, A. Fröba,
- J. Libuda, S. Baldelli,
- J. Behm, J. Schatz,
- J. Lopes ...

Supported by: DFG (SPP 1191, CoE-EAM, STE 620/9-1), A.v.Humboldt- and Max-Buchner-Stiftung, Industry