

Material synthesis in ionic liquids – with a focus on metal nanoparticles

Christoph Janiak

hein

janiak@uni-duesseldorf.de

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Symposium "Material Synthesis in Ionic Liquids and Interfacial Processes" 13/04/2016-15/04/2016 Goslar

Ionic liquids (ILs)

Definition:

"Ionic liquids are ionic compounds (salts) which are liquid below 100 °C."

see also: Dupont & Scholten, Chem. Soc. Rev. 2010, 39, 1780.

Material synthesis in ionic liquids

what you often read (for example):

- ionic liquids are unique alternatives to traditional aqueous or organic solvents;
- preparation of (advanced functional) materials in ILs is very promising;
- benefits of using ILs in materials synthesis;

because of ILs':

- excellent solvating properties,
- negligible vapor pressure,
- high thermal stability,
- wide liquidus range,
- ability to dissolve a variety of materials.

Further reading: J. Łuczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, A. Zaleska-Medyns, Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role, Part 2: Application in synthesis, *Adv. Coll. Inferfac. Sci.* 2016, 230, 13-28; *Adv. Coll. Inferfac. Sci.* 2016, 227, 1-52.

ionothermal synthesis

Material synthesis in ionic liquids

ionothermal synthesis is often combined with

- "nano" (including systems > 100 nm);
- use of microwave heating

Ionic liquids (ILs) - and microwave heating

excellent absorption efficiency of ILs for microwave energy

- microwave heating is extremely rapid ("simple" and "energy saving")
- microwave radiation can interact directly with the reaction components

Material synthesis in ionic liquids

ionothermal synthesis is often combined with

- "nano" (including systems > 100 nm);
- use of microwave heating;
- synthesis of **new "phases"** inaccessible in conventional solvents or otherwise "standard" conditions;
- morphology control by ILs;
- -- "the role of ILs in ionothermal syntheses can be templating, cotemplating, and no templating"; (R.E. Morris, *Chem. Commun.* **2009**, 2990.)
- ILs / ionothermal methods are employed in
- -- the synthesis of zeolites, metal-organic frameworks, metal nanoparticles, metal nanorods, metal oxide NPs, semiconductors, polynuclear metal complexes, microporous and mesoporous carbon and graphene,
- -- electrochemical synthesis of nanomaterials (cf. work of Endres)

Further reading:

Z. Li et al., Ionic liquids for synthesis of inorganic nanomaterials, Curr. Opinion Sol. State Mater. Sci. 2008, 12,

1-8.

X. Duan et al., The art of using ionic liquids in the synthesis of inorganic nanomaterials, *CrystEngComm* **2014**, 16, 2550-2559.

Material synthesis in ionic liquids

noted less often:

- problem of IL purity,
- IL hydrolysis and decomposition

Ionic liquids (ILs) - halide analysis

Dionex ICS-1100

+ headspace-KFT for water content

Material synthesis in ionic liquids

- ZnO micro-pyramids
- CdSe nanoparticles
- metal nanoparticles
- -- Pt
- -- CuZn
- -- NiGa
- -- RuSn
- metal nanoparticles deposited on "graphene"

See also: F. Endres, Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors, *ChemPhysChem* **2002**, 3, 144-154.

2 hun

A. Panniello et al. Semiconductor nanocrystals dispersed in imidazolium-based ionic liquids: a spectroscopic and morphological investigation, *J. Nanopart. Res.* **2013**, 15, 1567

ZnO micro-pyramids

CdSe nanoparticles

- Novel properties electron tunneling, size quantization of energy levels
- Discrete electronic energy levels below 7.6 nm (particle in the box)
- Hypsochromic shift of the absorption due to quantum confinement

M.L. Landry, T.E. Morrell, T.K. Karagounis, C.-H. Hsia, C.Y. Wang, J. Chem. Ed. 2014, 91, 274–279.

Synthetic methods to metal chalcogenides

- Colloidal solution methods
- High temperature injection methods
- Solvothermal/hydrothermal processes
- Synthesis from elemental precursors
- Pulse plasma assisted synthesis
- Sonochemical processes
- Reflux condensation methods
- Microwave assisted synthesis
- Ionic liquid assisted methods

Possible advantages: Variety of IL media, Variety of precursors, No stabilizing agents necessary

P.K. Bajpai, S. Yadav, A. Tiwari, H.S. Virk, Solid State Phenomena 2015, 222, 187.

K. Klauke, B. Hahn, K. Schütte, J. Barthel, C. Janiak, Nano-Structures & Nano-Objects 2015, 1, 24-31.

A. Guleria, A.K. Singh, M.C. Rath, S.K. Sarkar, S. Adhikari, *Dalton Trans.* 2014, 43, 11843.

MSe-NPs in [BMIm][BF₄]: dual-source precursor in fluorous IL

K. Klauke, B. Hahn, K. Schütte, J. Barthel, C. Janiak, Nano-Structures & Nano-Objects 2015, 1, 24-31.

MSe-NPs in [BMIm][BF₄]: single-source precursor in fluorous IL HEINRICH HEIN

K. Klauke, B. Hahn, K. Schütte, J. Barthel, C. Janiak, Nano-Structures & Nano-Objects 2015, 1, 24-31.

MSe-NPs in [BMIm][BF₄]: single-source precursor in fluorous IL

K. Klauke, B. Hahn, K. Schütte, J. Barthel, C. Janiak, Nano-Structures & Nano-Objects 2015, 1, 24-31.

 $[BMIm][BF_{4}]$

ZnSe-NPs

1, 2 or 3

see poster P12 of K. Klauke

K. Klauke, B. Hahn, K. Schütte, J. Barthel, C. Janiak, Nano-Structures & Nano-Objects 2015, 1, 24-31.

Material synthesis in ionic liquids – with a focus on metal nanoparticles

Examples:

- ZnO micropyramid
- CdSe nanoparticles
- metal nanoparticles
- -- Pt
- -- CuZn
- -- NiGa
- -- RuSn
- metal nanoparticles deposited on "graphene"

M-NPs in ILs: see also work by Chaudret, Santini, Philippot et al. Dupont, Scholten et al. Endres, Höfft et al. Prechtl et al.

Guinviel Spin

and many others

Scope

 Further reading:
 J.D. Scholten, B.C. Leal, J. Dupont, Transition Metal Nanoparticle Catalysis in Ionic Liquids, ACS Catalysis 2012, 2, 184–200.
 V.I. Pârvulescu, C. Hardacre, Catalysis in Ionic Liquids, Chem. Rev. 2007, 107, 2615-2665.

Stabilization of (metal) nanoparticles

Coord. Chem. Rev. **2011**, 255, 2039. Review: *Z. Naturforsch. B*, **2013**, 68, 1059.

"Ligand-free" metal nanoparticles in ionic liquids

Chem. Commun. **2008**, 1789. *Organometallics* **2008**, 27, 1976.

J. Organomet. Chem. 2009, 694, 1069.

Chem. Eur. J. **2010**, *16*, 3849. Dalton Trans. **2011**, *40*, 8290. Coord. Chem. Rev. **2011**, 255, 2039.

Review: Z. Naturforsch. B, **2013**, 68, 1059.

Ionic Liquids (ILs) in Organometallic Catalysis / Topics in Organometallic Chemistry, Springer, 2015

Organometallic precursors for metal nanoparticles

Organometallic precursors

- considered early on but less developed – need to prepare sensitive organometallics

possible advantages:

- clean and low-temperature thermolysis or photolysis
- labile M–C bond with low dissociation energy
- M–C + H₂ gives M–C bond hydrogenolysis \rightarrow M–H + H–C \rightarrow M + H₂

= "soft wet-chemical synthesis" of metal nanoparticles for size, shape and composition control

Further reading; review: C. Amiens, B. Chaudret, D. Ciuculescu-Pradines, V. Collière, K. Fajerwerg, P. Fau, M. Kahn, A. Maisonnat, K. Soulanticac, K. Philippot, *New J. Chem.* **2013**, *37*, 3374-3401.

 $M_x(CO)_y$ precursors

Ionic liquids for the synthesis of metal nanoparticles

absence of CO by Raman-FT spectroscopy: 0.05 -[Cr(CO)₆] dissolved in [BMIm][BF₄] Cr-NPs in [BMIm][BF₄] after 3 min MWI 0.04 Raman Intensity 0.03 0.02 0.01 0.00 4000 3500 3000 2500 2000 1500 1000 500 0 $v [cm^{-1}]$

Chem. Eur. J. 2010, 16, 3849.

Ionic liquids for the synthesis of metal nanoparticles - M_x(CO)_y precursors

Ru-NPS Ø 1.6(4) nm

Ru, Rh, Ir-NP/IL dispersions are active hydrogenation catalysts for olefins and aromatics

Cr, Mo, W: Chem. Commun. 2008, 1789-1791.
Fe, Ru, Os: Organometallics 2008, 27, 1976-1978.
Co, Rh, Ir: J. Organomet. Chem. 2009, 694, 1069-1075.
Ru, Rh, Ir et al.: Chem. Eur. J. 2010, 16, 3849-3858.

CrystEngComm 2012, 14, 7607-7615.

Pt-nanoparticles as hydrosilylation catalyst $Ph \longrightarrow + HSiEt_{3} \xrightarrow{Pt-NP/[BMIm][BF_{4}]} \land or MW \qquad Ph \qquad SiEt_{3} + Et_{3}Si \qquad Himterstrate observed as the ph of the ph of the ph of the proximal of the proxi$

up to TOF 96000 h^{-1} at 0.0125 mol% Pt and quantitative conversion

Pt-NPs unchanged after catalysis:

Ø 1.6±0.4 nm

Metal-organic precursors for metal nanoparticles - metal amidinates R R R = Me, iPr, Bu, CyHex N-M-R' = MeMX R' M = V, Mn, Fe, Co, Cu, Zn, Pr, Nd, Eu R R R N II C NR R R R'L MX_{2} ...N R' or R ·R' II N N R NR Ν R R R R R R R' \Rightarrow synthesis of MX₃ MF_x nanoparticles in [BMIm][BF₄] R' interest in electrochemical analysis

B. S. Lim, A. Rahtu, J.-S. Park, R. G. Gordon, Inorg. Chem. 2003, 42, 7951-7958.

Bimetallic nanoparticles - CuZn and Cu₃Zn nanobrass

HEINRICH

VERSITÄT DÜSSELDO

Bimetallic nanoparticles - CuZn and Cu₃Zn nanobrass

Bimetallic nanoparticles - CuZn and Cu₃Zn nanobrass

Bimetallic alloy nanoparticles - CuZn and Cu₃Zn nanobrass

Bimetallic alloy nanoparticles - CuZn and Cu₃Zn nanobrass

Bimetallic nanoparticles - "CuZn" for MeOH catalysis

hain

HEINRICH HEINE

Nanoscale 2014, 6, 3116-3126.

Bimetallic nanoparticles - "CuZn" after MeOH catalysis

HEINRICH

VERSITÄT DÜSSELDOR

Bimetallic nanoparticles - NiGa and Ni₃Ga

Bimetallic alloy nanoparticles - NiGa and Ni₃Ga

Fischer, Janiak et al., Nanoscale 2014, 6, 5532-5544.

Bimetallic alloy nanoparticles - NiGa and Ni₃Ga

NiGa/ionic liquid - catalytic semihydrogenation of alkynes

Semihydrogenation with PdGa, Pd₂Ga, Pd₃Ga₇ see Armbrüster et al., *J. Phys. Chem.* C **2011**, *115*, 1368; *JACS* **2010**, *132*, 14745; **2011**, *133*, 9112; with Fe₄Al₁₃ see Armbrüster, Schlögl, Grin et al. *Nat. Mater.* **2012**, *11*, 690.

NiGa/ionic liquid - catalytic semihydrogenation of alkynes

Can Hume-Rothery phases replace noble-metal catalysts?

hain

Fischer, Janiak et al., Nanoscale 2014, 6, 5532-5544.

Normally semihydrogenation requires noble metals.

Bimetallic alloy nanoparticles - "Ru₂Sn" and Ru₃Sn₇

Stabilization of metal nanoparticles from IL-dispersion onto surfaces

Nanoscale 2014, 6, 5532.

Thermally reduced graphite oxide (TRGO) as nanoparticle support

Graphite oxide, GO: Brodie, *Liebigs Ann. Chem.* **1860**, *114*, 6. Hummers, Offeman, *J. Am. Chem. Soc.* **1958**, *80*, 1339. Boehm, *Z. Anorg. Allg. Chem.* **1967**, *353*, 236.

Stabilization of metal nanoparticles on graphene networks

M-NP

IL also for

"graphene"

exfoliation

M-NP@TRGO

(TRGO = thermally reduced graphite oxide)

Marquardt, D., Vollmer, C., Thomann, R., Steurer, P., Mülhaupt, R., Redel, E., Janiak, C., *Carbon* **2011**, 49, 1326-1332. Marcos-Esteban, R., Schütte, K., Brandt, P., Marquardt, D., Meyer, H., Beckert, F., Mülhaupt, R., Kölling, H., Janiak, C., *Nano-Structures & Nano-Objects* **2015**, *2*, 11-18.

Metal-NPs@TRGO-SH synthesis in ILs

Ø 9 ± 4 nm, 3.2 wt% Pt-NP@TRGO

Marquardt, D., Beckert, F., Pennetreau, F., Tölle, F., Mülhaupt, R., Riant, O., Hermans, S., Barthel, J., Janiak, C., Carbon **2014**, *66*, 285-294.

Carbon 2011, 49, 1326-1332.

Ir-NP@TRGO as re-usable hydrogenation catalysts under organic-solvent-free conditions

Marcos-Esteban, R., Schütte, K., Brandt, P., Marquardt, D., Meyer, H., Beckert, F., Mülhaupt, R., Kölling, H., Janiak, C., *Nano-Structures & Nano-Objects* **2015**, *2*, 11-18

Deposition of metal nanoparticles on Teflon!

Rh-NP@stirring bar, Ø 2.1(5) nm

Appl. Catal. A 2012, 425-426, 178.

Deposition of metal nanoparticles on Teflon!

Appl. Catal. A 2012, 425-426, 178-183

Summary **Precursors** $Zn/Cd(R_2N--Se)_2$ nanoparticles $M_x(CO)_y$ Cp'PtMe₃ Ni₃Ga: <u>10 nm</u> $M(R_2$ -Me-amidinate)_x Ni(COD)₂, GaCp* methods: Au(CO)CI no capping ligands PXRD, KAuCl₄ necessary! HR-(S)TEM, "the catalyst" EDX, XPS DLS _\ ⊕ ∠N____BF4_ Ru,Rh@TRGO catalysis $BMIm^+BF_4^$ ionic liquids $H_2 + CO + CO_2 \xrightarrow{Cu/ZnO-NP} CH_3OH$ NiGa-NP µ-wave H_2 heating

Acknowledgements - the Team counts

Dr. Nader Amadeu Janina Dechnik Subarna Dey Dr. Sandeep Dey **Dennis Dietrich** Dominik Fröhlich Sebastian Glomb Christian Heering Annika Herbst Felix Jeremias Anna Christin Kautz Karsten Klauke Gamall Makhloufi Raquel Marcos Esteban Hajo Meyer Bahareh Nateghi Christina Rutz Kai Schütte Marvin Siebels Ilka Simon Susann Wegner Tian Zhao

Prof. R. A. Fischer, Univ. Bochum

Alloy MM'-NPs Pt precursors for Pt-NPs: RuSn precursors Modified graphene: TEM, HRTEM:

> Federal Ministry of Economics and Technology

Ainistry BUSINESS. mics GROWTH. nology PROSPERITY.

Prof. C. Ganter, HHU
Prof. M. Saito, Saitama Univ. Japan
Prof. R. Mülhaupt, Univ. Freiburg, Prof. S. Hermans, UC Louvain
Dr. J. Barthel, FZ Jülich

DAAD

Forschungsgemeinschaft

DFG

Deutsche

Deutscher Akademischer Austausch Dienst German Academic Exchange Service Federal Ministry of Education and Research

China Scholarship Council www.csc.edu.cn

SPP 1708